Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech III Year II Semester Regular Examinations August-2022 MICROWAVE THEORY AND TECHNIQUES

(Electronics and Communication Engineering)

		(Electronics and Communication Engineering)		
Tir	ne: 3	3 hours	Max. Marl	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)		
		UNIT-I		
1	a	Discuss in detail about the concept of mode	L2	6M
	b	Explain about various losses that occur in microwave transmission	L2	6M
		OR		
2	a	Define the following terms	L2	6M
		i) Guide wavelength ii) Cut off frequency iii) Cut off wavelength.		
	b	List out the features of TEM, TE and TM Modes.	L2	6 M
		UNIT-II		
3	a	.Explain with neat sketch the working of coaxial line transmission line.	L1	6M
	b	What is Isolator? Derive its S-matrix.	L1	6M
		OR		
4	a	Derive the equation for the propagation of TE waves in rectangular	ar L3	6M
		waveguide.		
	b	Explain the working principle of Gyrator with neat sketch.	L2	6M
		UNIT-III		
5	a	Describe the following attenuators	L2	6M
		i) Resistive Card attenuator ii)Rotary Vane Attenuator		
	b	Demonstrate the working of Directional Coupler with suitable diagram	& L2	6M
		Express its Coupling factor and directivity.		
		OR		
6	a	Identify the microwave tee, whose rectangular slot is cut along the broad	er L3	6M
		dimension, Describe in detail.		
	b	Discuss about the applications of the magic Tee.	L2	6M
		UNIT-IV		
7	a	Mention the limitations and losses of conventional tubes usage at Microway	ve L2	6M
		frequencies.		
	b	A two cavity klystron amplifier has the following characteristics:	L2	6M
		Voltage gain = 15 dB, Input Power = 5 mW, R _{sh} of input cavity = 30 k ohr	n,	
		R _{sh} of output cavity =40 k ohm, load impedance = 40 Kohm. Find input rn	ıs	
		voltage and the output rms voltage.		
		OR		
8	a	Explain the velocity modulation process in two cavity Klystron tube ar	nd L2	6 M
		derive the equation for velocity modulation.		
	b	Explain in detail about 8- Cavity magnetron with suitable diagram.	L2	6M

Q.P. Code: 19EC0422 UNIT-V What are the precautions to be taken while setting up microwave bench for **L6** 9 6M measurement of various parameters? Explain. With the help of wave meter method explain the microwave frequency L1 6M b measurement OR Discuss in detail about the microwave power measurement using Bolometric L2 **6M** 10 technique.

*** END ***

b Describe the measurement of impedance using slotted line method.

L4

6M